|
| 1: |
|
eq(0,0) |
→ true |
| 2: |
|
eq(0,s(m)) |
→ false |
| 3: |
|
eq(s(n),0) |
→ false |
| 4: |
|
eq(s(n),s(m)) |
→ eq(n,m) |
| 5: |
|
le(0,m) |
→ true |
| 6: |
|
le(s(n),0) |
→ false |
| 7: |
|
le(s(n),s(m)) |
→ le(n,m) |
| 8: |
|
min(cons(0,nil)) |
→ 0 |
| 9: |
|
min(cons(s(n),nil)) |
→ s(n) |
| 10: |
|
min(cons(n,cons(m,x))) |
→ if_min(le(n,m),cons(n,cons(m,x))) |
| 11: |
|
if_min(true,cons(n,cons(m,x))) |
→ min(cons(n,x)) |
| 12: |
|
if_min(false,cons(n,cons(m,x))) |
→ min(cons(m,x)) |
| 13: |
|
replace(n,m,nil) |
→ nil |
| 14: |
|
replace(n,m,cons(k,x)) |
→ if_replace(eq(n,k),n,m,cons(k,x)) |
| 15: |
|
if_replace(true,n,m,cons(k,x)) |
→ cons(m,x) |
| 16: |
|
if_replace(false,n,m,cons(k,x)) |
→ cons(k,replace(n,m,x)) |
| 17: |
|
sort(nil) |
→ nil |
| 18: |
|
sort(cons(n,x)) |
→ cons(min(cons(n,x)),sort(replace(min(cons(n,x)),n,x))) |
|
There are 12 dependency pairs:
|
| 19: |
|
EQ(s(n),s(m)) |
→ EQ(n,m) |
| 20: |
|
LE(s(n),s(m)) |
→ LE(n,m) |
| 21: |
|
MIN(cons(n,cons(m,x))) |
→ IF_MIN(le(n,m),cons(n,cons(m,x))) |
| 22: |
|
MIN(cons(n,cons(m,x))) |
→ LE(n,m) |
| 23: |
|
IF_MIN(true,cons(n,cons(m,x))) |
→ MIN(cons(n,x)) |
| 24: |
|
IF_MIN(false,cons(n,cons(m,x))) |
→ MIN(cons(m,x)) |
| 25: |
|
REPLACE(n,m,cons(k,x)) |
→ IF_REPLACE(eq(n,k),n,m,cons(k,x)) |
| 26: |
|
REPLACE(n,m,cons(k,x)) |
→ EQ(n,k) |
| 27: |
|
IF_REPLACE(false,n,m,cons(k,x)) |
→ REPLACE(n,m,x) |
| 28: |
|
SORT(cons(n,x)) |
→ SORT(replace(min(cons(n,x)),n,x)) |
| 29: |
|
SORT(cons(n,x)) |
→ REPLACE(min(cons(n,x)),n,x) |
| 30: |
|
SORT(cons(n,x)) |
→ MIN(cons(n,x)) |
|
The approximated dependency graph contains 5 SCCs:
{19},
{20},
{21,23,24},
{25,27}
and {28}.